Refine Your Search

Topic

Author

Search Results

Technical Paper

Planar Measurements of the Liquid Phase Temperature in Diesel Sprays Injected into High-Pressure and High-Temperature Environments

1996-05-01
961202
The two-dimensional distributions of the liquid phase temperatures in diesel sprays injected into high-pressure and high-temperature environments were measured using the laser-induced fluorescence technique. The liquid fuel (n-hexadecane) was doped with pyrene(C16H10). The fuel spray doped with pyrene was injected under a high-pressure of 3.1MPa and a high-Temperature of 773K. The evaporating diesel spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The fluorescence intensity ratios of the pyrene monomer and excimer emissions have temperature dependence, and were used to determine the liquid phase temperatures in the diesel sprays. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence images by the temperature dependence of the intensity ratio.
Technical Paper

PLIF Measurements of the Cyclic Variation of Mixture Concentration in a SI Engine

1994-03-01
940988
Planar laser-induced fluorescence (PLIF) technique was employed to perform the quantitative measurements of the cyclic variation of mixture concentration in the combustion chamber of a spark ignition (SI) engine. Nitrogen dioxide was used as the fluorescence tracer to simulate the fuel vapor. A Nd:YAG laser operated at its second harmonic wavelength was employed as the light source. The original engine was modified to introduce laser sheet light into the combustion chamber and the induced fluorescence was captured by a CCD camera fitted with a gated image intensifier. The measurements were done at the engine crank angles of 180° ∼ 300° ATDC with the engine speeds of 200 ∼ 400 rpm and the injection timings of -70 °, 50° and 100° ATDC. A theoretical analysis was made to describe the cyclically varying characteristics of the mixture concentration.
Technical Paper

Numerical and Experimental Analyses of the Injection Characteristics of Dimethyl Ether with a D. I. Diesel Injection System

1999-03-01
1999-01-1122
The fuel injection characteristics of Dimethyl Ether(DME) were calculated and compared with the calculated results of diesel fuel using a simulation model of an in-line diesel injection system in order to clarify the differences between the injection characteristics of the two fuels. Moreover, numerical analyses for the DME injection were performed while changing the fuel parameters and the injection system parameters in order to estimate the effects of these parameters on the fuel injection characteristics. The effects of some of these parameters were evaluated by experimental results conducted in a constant volume vessel. Furthermore, the spray tip penetration was calculated using the computed results of the injection pressure. As a result of this study, the injection characteristics of the DME fuel are basically confirmed. By the macroscopic analyses of these spray characteristics, the DME spray behavior in a combustion chamber can be estimated.
Technical Paper

Numerical Studies of Spray Combustion Processes of Palm Oil Biodiesel and Diesel Fuels using Reduced Chemical Kinetic Mechanisms

2014-04-01
2014-01-1143
Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate.
Technical Paper

Model Verification of the Evaporating Diesel Spray Distribution in the Combustion Chamber of a D.I. Diesel Engine

1996-10-01
962054
Evaporating diesel spray distributions in the combustion chamber of a direct injection diesel engine were calculated using a phenomenological simulation model, and the calculated results were described three dimensionally using a 3-D volume rendering application which has been developed by the authors. The evaporating diesel spray distributions in the combustion chamber were measured using a technique based on the extinction of ultraviolet (wavelength of 280nm) and visible (wavelength of 560nm) laser lights. The measured results were compared with the predicted spray distributions in order to verify the simulation model. The calculated results show reasonably good agreement with the experimental results, and the validity of this spray model as a practical computational tool for estimating diesel spray behavior is confirmed by this comparison.
Technical Paper

Mixture Formation and Combustion Processes of Multi-Hole Nozzle with Micro Orifices for D.I. Diesel Engines

2007-10-29
2007-01-4049
In order to investigate effects of the multi-hole nozzle with micro orifices on mixture formation processes in Direct-Injection Diesel engines, mixture characteristics were examined via an ultraviolet-visible laser absorption scattering (LAS) technique under various injectors. The injection quantity per orifice per cycle was reduced by nozzle hole sizes. The LAS technique can provide the quantitative and simultaneous measurements of liquid and vapor phases concentration distributions inside of the fuel spray. Mass of ambient gas entrained into the spray, liquid/ vapor mass and mean equivalence ratio of total fuel were obtained based on Lambert Beer's law. As a result, the leaner and more homogeneous fuel-gas mixture can be achieved by reducing the nozzle hole diameter, in the meanwhile more ambient gas were entrained into the spray. Moreover, relationships between mixture formation and D.I.
Technical Paper

Internal Fuel Flow, Near-Field and Far-Field Spray Evolution, and Mixture Formation Characteristics of Diesel Injectors - A Comparison between Multi- and Single-Hole Injectors

2019-04-02
2019-01-0273
A comparison of spray characteristics was conducted between single- and multi-hole injectors. A commercial software (AVL FIRE) was used to investigate the internal flow inside the sac volume, as well as the initial spray behavior at 1 mm downstream of the nozzle exit. Microscopic imaging was applied to observe the spray dispersion angle (spray cone angle) at the vicinity of the nozzle. Laser absorption scattering (LAS) technique was implemented for measuring the mixture concentration. Three injection quantities, namely 0.5, 2.5, and 5.0 mg/hole, were selected to observe the differences between transient and quasi-steady spray. The vapor penetration at the initial stage of the injection was greater for single-hole than that of multi-hole injector due to faster fuel pressure build-up process inside the sac volume.
Technical Paper

Insight on Early Spray Formation Process of a High-Pressure Swirl Injector for DISI Engines

2003-05-19
2003-01-1809
An early formation process of the spray, which was injected by a high-pressure swirl-type injector that is widely used in direct injection spark ignition (DISI) gasoline engines, was investigated through image analyzing techniques. The sprays were illuminated both by an Nd:YAG laser light sheet for getting the spray tomograms and by a tungsten lamp for getting the scattered back light shadow images of the sprays. The sprays were imaged by using a high-resolution CCD camera and a high-speed digital imaging system. The early development aspects of the spray were investigated in detail through the measurement of the tip penetration, cone angle and width of the early spray. At the start of injection, the liquid column emerges first, and it forms the “pre-swirl spray” without the swirl component. Following the liquid column, the liquid sheet emerges, however its radial velocity component is weak to form the complete hollow-cone spray. This spray changes into the “weak-swirl spray”.
Technical Paper

Injection Strategy to Enhance Mixture Formation and Combustion of Fuel Spray in Diesel Engine

2018-04-03
2018-01-0241
Increasing the injection pressure and splitting the injection stage are the major approaches for a diesel engine to facilitate the fuel-air mixture formation process, which determines the subsequent combustion and emission formation. In this study, the free spray was injected by a single-hole nozzle with a hole-diameter of 0.111 mm. The impinging spray, formed by a two-dimensional (2D) piston cavity having the same shape as a small-bore diesel engine, was also investigated. The injection process was performed by both with and without pre-injection. The main injection was carried out either as a single main injection with injection pressure of 100 MPa (Pre + S100) or a split main injection with 160 MPa defined by the mass fraction ratio of 3:1 (Pre + D160_3-1). The tracer Laser Absorption Scattering (LAS) technique was adopted to observe the spray mixture formation process. The ignition delay/location and the soot formation in the spray flame were analyzed by the two-color method.
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

1995-10-01
952412
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
Technical Paper

Ignition and Flame Propagation of Spray Compound Mixture

1993-10-01
932711
The ignition and flame propagation processes of a propane-air mixture compounded with a kerosene spray were investigated in order to allow a better understanding of the multi-phase combustion process of the spray compound mixture in a direct injection stratified charge (DISC) engine. The ignition probability and the flame propagation velocity, as functions of the overall equivalence ratio, fraction of propane in the fuel, ignition energy and the Sauter mean diameter of the spray, were measured under atmospheric conditions. The development of the flame kernel and the propagating flame were observed by a high-speed video camera combined with a schlieren system. Adding small amounts of the kerosene spray to the lean propane-air mixture improved the ignition probability. However, the ignition probability depended strongly on the Sauter mean diameter and the ignition energy. Replacing the propane with the kerosene spray in a rich propane-air mixture increased the flame propagation velocity.
Journal Article

Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines

2008-10-06
2008-01-2469
The concept of two closely spaced micro-orifices (group hole nozzle) has been studied as a promising technology for the reduction of soot emission from direct injection (DI) diesel engines by improving the fuel atomization and evaporation. One of the main issues on group hole nozzle is the arrangement of orifices with various distances and angles. In this study, the ignition and combustion characteristics of wall-impinging diesel sprays from group-hole nozzles were investigated with various angles between two micro-orifices (included angles). A laser absorption scattering (LAS) technique for non-axisymmetric sprays, developed based on a LAS technique for axisymmetric spray, was applied to investigate the liquid/vapor mass distribution of wall-impinging sprays. The direct flame images and OH radical images inside a high pressure constant volume vessel were captured to analyze the effect of included angle on spray ignition and combustion characteristics.
Technical Paper

Ignition Delays of DME and Diesel Fuel Sprays Injected by a D.I. Diesel Injector

1999-10-25
1999-01-3600
Among the alternative fuels, dimethyl ether (DME), one of the oxygenated fuels, attracts attention as an alternative fuel for the Diesel engine since the properties of the DME are fitted to the Diesel engine combustion and the know-how development has been made of the mass production of the DME from a natural gas. In this study, experiments were performed of ignition characteristics of the DME and Diesel fuel sprays injected by a D.I. Diesel injector into a high-pressure, high-temperature vessel. The fuel injection was made by a Bosch type injection system. A schlieren optical system was adopted for visualizing the ignition process as well as the vaporization process of the DME and Diesel fuel sprays. The ignition delay was measured by using a photo-sensor which had a sensitivity in the wavelength range from visible to ultraviolet. Pressure and temperature of the ambient air and the oxygen concentration of the ambient air were changed as experimental parameters.
Technical Paper

Hole Geometrical Effect on Internal Flow, Fuel Atomization and Spray Evaporation of Multi-Hole Nozzle for Diesel Engine

2017-03-28
2017-01-0860
With the aim of improving engine performance, recent trend of fuel injection nozzle design followed by engineers and researchers is focusing on more efficient fuel break up, atomization, and fuel evaporation. Therefore, it is crucial to characterize the effect of nozzle geometric design on fuel internal flow dynamics and the consequent fuel-air mixture properties. In this study, the internal flow and spray characteristics generated by the practical multi-hole (10 holes) nozzles with different nozzle hole length and hole diameter were investigated in conjunction with a series of computational and experimental methods. Specifically, the Computational Fluid Dynamics (CFD) commercial code was used to predict the internal flow variation inside different nozzle configurations, and the high-speed video observation method was applied to visualize the spray evolution processes under non-evaporating conditions.
Technical Paper

Group-Hole Nozzle Effects on Mixture Formation and In-cylinder Combustion Processes in Direct-Injection Diesel Engines

2007-10-29
2007-01-4050
The group-hole (GH) nozzle concept that uses two closely spaced micro-orifices to substitute the conventional single orifice has the potential to facilitate better fuel atomization and evaporation, consequently attenuate the soot emission formed in direct-injection (D.I.) diesel engines. Studies of quantitative mixture properties of the transient fuel spray injected by the group-hole nozzles were conducted in a constant volume chamber via the laser absorption-scattering (LAS) technique, in comparison with conventional single-hole nozzles. Specific areas investigated involved: the non-evaporating and the evaporating ambient conditions, the free spray and the spray impinging on a flat wall conditions. The particular emphasis was on the effect of one of key parameters, the interval between orifices, of the group-hole (SH) nozzle structure.
Technical Paper

Fuel Spray Trajectory and Dispersion in a D.I. Diesel Combustion Chamber

1989-02-01
890462
Experiments and modeling of the fuel spray trajectory and dispersion influenced by both a swirling gas flow and wall impingement were performed under simulated direct injection (D.I.) diesel engine conditions at a high pressure and high temperature. A spray was injected into the steady swirling gas flow and impinged on the simulated piston cavity wall in a constant-volume bomb. High-speed Schlieren photographs provided the informative data on the behavior of the spray vaporizing in such diesel-like circumstances. A simplified computational model was developed to describe the spray trajectory and the fuel vapor dispersion in the D.I. diesel combustion chamber. The model includes the effects of the breakup on the trajectory and the vaporization of the spray, and the effects of the swirling gas flow and the wall impingement on the dispersion of the fuel vapor.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Journal Article

Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2012-10-23
2012-32-0018
Ethanol is regarded as the promising alternative fuel for gasoline to meet the strict low emission standard for spark ignition engines. In this study, the spray mixture formation process for different ethanol blended fuels, including E0 (gasoline), E85 (85% volume of ethanol and 15% volume of gasoline) and E100 (ethanol), has been evaluated using hole-type nozzle by the measurement of Laser Absorption Scattering (LAS) technique in a constant volume vessel. Based on the principle of LAS, the quantitative vapor and liquid phase distribution from different ethanol blended fuel can be obtained by the light extinction regime. Aiming to analyze the effect of mixture formation and evaporation for different components of blended fuel or pure gasoline and ethanol, the vapor distribution of gasoline was determined by using p-xylene, which had similar physical properties to gasoline, especially higher boiling temperature components, and higher absorption for ultraviolet.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
X